Orthorhombic
Pbca
$a=9.714(2) \AA$
$b=16.742(2) \AA$
$c=16.540(2) \AA$
$V=2689.9(7) \AA^{3}$
$Z=8$
$D_{x}=1.673 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Cell parameters from 25 reflections
$\theta=10.4-15.1^{\circ}$
$\mu=2.195 \mathrm{~mm}^{-1}$
$T=293$ (1) K
Plate
$0.70 \times 0.50 \times 0.06 \mathrm{~mm}$
Light brown

Data collection

Enraf-Nonius CAD-4-MACHS $R_{\text {int }}=0.016$
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
Gaussian (Sheldrick, 1976)
$T_{\text {min }}=0.343, T_{\text {max }}=0.876$
3371 measured reflections
2636 independent reflections 2158 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.074$
$S=1.031$
2636 reflections
180 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0408 P)^{2}\right.$
$+1.7223 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.62 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.90 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Te}-\mathrm{C} 14$	$2.120(4)$	$\mathrm{N}-\mathrm{C} 8$	$1.416(4)$
$\mathrm{Te}-\mathrm{Cl}$	$2.122(3)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.488(4)$
$\mathrm{O}-\mathrm{C} 7$	$1.230(3)$	$\mathrm{C} 8-\mathrm{C} 13$	$1.376(5)$
$\mathrm{N}-\mathrm{C} 7$	$1.341(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.392(4)$
$\mathrm{C} 14-\mathrm{Te}-\mathrm{C} 1$	$96.66(16)$	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 2$	$120.1(3)$
$\mathrm{C} 7-\mathrm{N}-\mathrm{C} 8$	$129.0(3)$	$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 2$	$117.5(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	$119.6(3)$	$\mathrm{C} 13-\mathrm{C} 8-\mathrm{C} 9$	$119.1(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$121.1(3)$	$\mathrm{C} 13-\mathrm{C} 8-\mathrm{N}$	$117.8(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$119.3(2)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N}$	$123.0(3)$
$\mathrm{O}-\mathrm{C} 7-\mathrm{N}$	$122.4(3)$		
$\mathrm{C} 14-\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 6$	$19.2(3)$	$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 7-\mathrm{O}$	$-32.0(4)$
$\mathrm{C} 14-\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 2$	$-162.1(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{N}$	$-34.4(4)$
$\mathrm{C} 8-\mathrm{N}-\mathrm{C} 7-\mathrm{O}$	$-5.8(5)$	$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 7-\mathrm{N}$	$147.7(3)$
$\mathrm{C} 8-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 2$	$174.5(3)$	$\mathrm{C} 7-\mathrm{N}-\mathrm{C} 8-\mathrm{C} 13$	$167.2(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{O}$	$145.9(3)$	$\mathrm{C} 7-\mathrm{N}-\mathrm{C} 8-\mathrm{C} 9$	$-15.4(5)$

The coordinates of the H atom attached to N were refined $[\mathrm{N}-\mathrm{H}=0.72(3) \AA$]; other H atoms were treated as riding. $U_{\text {iso }}$ values of all H atoms were refined.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: PROCESS_DATA (Gable et al., 1993). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JA1000). Services for accessing these data are described at the back of the journal.

References

Ahmed. M. A. K., McWhinnie, W. R. \& Hamor, T. A. (1985). J. Organomet. Chem. 293, 219-228.
Azumaya, I., Yamaguchi, K., Kagechika, H., Saito, S., Itai, A. \& Shudo, K. (1994). J. Pharm. Soc. Jpn, 114, 414-430.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Duke, N. E. C. \& Codding, P. W. (1992). J. Med. Chem. 35. 18061812.

Dupont, L., Dideberg, O. \& Jacquemin, P. (1990). Acta Cṛst. C46, 484-486.
Engman, L., Laws, M. J., Malmström, J., Schiesser, C. H. \& Zugaro, L. (1999). J. Org. Chem. 64, 6764-6770.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft. The Netherlands.
Fong, M. C., Gable, R. W. \& Schiesser, C. H. (1996). Acta Crust. C52, 1886-1889.
Fong, M. C. \& Schiesser, C. H. (1997). J. Org. Chem. 62, 3103-3108.
Gable, R. W., Hoskins, B. F., Linden, A., McDonald, I. A. S. \& Steen, R. J. (1993). PROCESS_DATA. Program for the Processing of CAD-4 Diffractometer Data. University of Melbourne, Australia.
Hariharan, M. \& Srinivasan, R. (1990). Acta Cryst. C46, 1056-1058.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick. G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46. 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 2102-2105

> The biologically active iron chelators 2-pyridylcarboxaldehyde isonicotinoylhydrazone, 2-pyridylcarboxaldehyde benzoylhydrazone monohydrate and 2-furaldehyde isonicotinoylhydrazone

Des R. Richardson, ${ }^{a}$ Erika Becker ${ }^{a}$ and Paul V. BERNHARDT ${ }^{b}$
${ }^{a}$ Department of Medicine, University of Queensland, Clinical Sciences Building Floor C, Royal Brisbane Hospital, Brisbane 4029, Australia, and ${ }^{b}$ Department of Chemistry, University of Queensland, Brisbane 4072, Australia. E-mail: bernhardt@chemistry.uq.edu.au
(Received 7 June 1999; accepted 7 September 1999)

Abstract

In the crystal structures of the respective title compounds, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}, \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$, variations in the torsion angles of the aromatic pyridyl

and benzoyl groups are observed, and the disposition of the heterocyclic aldehyde is shown to be influenced by the ring size of this group.

Comment

Aroylhydrazone ligands continue to attract interest as potential chelators for the treatment of iron-overload disease and also as agents with considerable antitumour activity (Johnson et al., 1982; Baker et al., 1992; Richardson et al., 1995; Richardson \& Milnes, 1997). As part of our research programme examining the development of clinically useful iron chelators, we have synthesized and determined the crystal structures of three aroylhydrazones, namely 2-pyridylcarboxaldehyde isonicotinoylhydrazone, (1), 2-pyridylcarboxaldehyde benzoylhydrazone monohydrate, (2) $\cdot \mathrm{H}_{2} \mathrm{O}$, and 2-furaldehyde (2-furfural) isonicotinoylhydrazone, (3). These chelators were designed to improve upon the aqueous solubility and iron-chelation efficacy of the pyridoxal isonicotinoylhydrazone analogues that were examined previously. Studies assessing the biological activity of compounds (1)-(3) have been completed and will be described elsewhere (Becker \& Richardson, 1999). The title compounds have been known for some time [(1), Beyerman et al. (1954); (2), Grammaticakis (1956); (3), Fox \& Gibas (1953)], but no crystal structures of this series have been published.

(1)

(2)

(3)

In the crystal structure of (1) (Fig. 1), the 2- and 4pyridyl rings are each twisted slightly about their connecting $\mathrm{C}-\mathrm{C}$ bonds, defined by the respective $\mathrm{C} 3-$ $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 2$ torsion angles of 3.9 (9) and $9.7(7)^{\circ}$. The 2-pyridyl N atom (N3) is anti with respect to the imine N atom (N 1), which avoids repulsion between the H atoms attached to Cl and C 3 . As a consequence, the molecule is unfavourably disposed
to chelate a metal ion in a tridentate configuration. In order for this ligand to bind meridionally (through the donor atoms O1, N1 and N3), the pyridyl group would have to rotate by $c a 180^{\circ}$ about $\mathrm{C} 1-\mathrm{C} 2$.

Fig. 1. View of (1) showing 30\% probability ellipsoids.

The crystal structure of the benzoyl analogue (2).$\mathrm{H}_{2} \mathrm{O}$ (Fig. 2) found the hydrazone and a water of crystallization each located on a general site. The bond lengths are similar to those found in (1). The phenyl ring is somewhat more twisted about the connecting $\mathrm{C}-\mathrm{C}$ bond $\left[\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9\right.$ torsion angle $\left.22.6(3)^{\circ}\right]$ than its 4-pyridyl analogue in (1). The disposition of the 2-pyridyl ring again finds N3 anti to N1. Hydrogen bonding with the water O atom (O 2) was also identified. The most significant contacts are $\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 3^{i}$ of $1.97 \AA\left[\mathrm{O} 2 \cdots \mathrm{~N} 3^{\mathrm{i}} 2.875(2) \AA\right]$ and $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{ii}}$ of $2.00 \AA\left[\mathrm{~N} 2 \cdots \mathrm{O} 2^{\mathrm{ii}} 2.852(2) \AA\right.$] [symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z$; (ii) $\left.-x+\frac{1}{2}, y+\frac{1}{2}, z\right]$.

Fig. 2. View of (2) $\cdot \mathrm{H}_{2} \mathrm{O}$ showing 30% probability ellipsoids.

The furfural hydrazone (3) (Fig. 3) crystallizes with two independent molecules ($n=A$ and B) in the asymmetric unit, but the structural differences between these molecules are negligible. The furyl O atom ($\mathrm{O} 1 n$) is syn with respect to the imine N atom ($\mathrm{N} 1 n$), in contrast to the structures of (1) and (2) where the heteroatoms were anti. In this case, the ca 10° more obtuse $\mathrm{C} 1 n-\mathrm{C} 2 n-\mathrm{C} 3 n$ angle enforced by the planar five-membered furyl ring (ca 130°) relieves the $\mathrm{C} 1 n-$ $\mathrm{H} \cdots \mathrm{H}-\mathrm{C} 3 n$ repulsion which led to the corresponding anti conformers (1) and (2). In (3), the 4-pyridyl ring is twisted significantly about its connecting $\mathrm{C}-\mathrm{C}$ bond ($\mathrm{C} 8 n-\mathrm{C} 7 n-\mathrm{C} 6 n-\mathrm{N} 2 n$ ca 33°), whereas the furyl ring torsion is relatively small (ca 4°).

Fig. 3. View of (3) (one independent molecule) showing 30\% probability ellipsoids.

We are currently exploring the coordination chemistry and biological activity of these three potential ligands and their analogues.

Experimental

The title compounds were prepared in good yield by Schiff base condensation between the corresponding aldehyde [2pyridylcarboxaldehyde for (1) and (2), and 2-furfural for (3)] and acid hydrazide [isonicotinic acid hydrazide for (1) and (3), and benzoic acid hydrazide for (2)] in refluxing ethanol. The ${ }^{1} \mathrm{H}$ NMR and microanalytical results are consistent with their formulation. Crystals of each compound were grown from saturated ethanolic solutions.

Compound (1)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=226.24$
Orthorhombic
Fdd 2
$a=43.749(10) \AA$
$b=20.984$ (2) \AA
$c=4.5980(10) \AA$
$V=4221.1(14) \AA^{3}$
$Z=16$
$D_{x}=1.424 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.068$
\quad diffractometer	$\theta_{\max }=24.98^{\circ}$
$\omega-2 \theta$ scans	$h=-51 \rightarrow 51$
Absorption correction: none	$k=0 \rightarrow 24$
2163 measured reflections	$l=-2 \rightarrow 5$
1060 independent reflections	3 standard reflections
625 reflections with	frequency: 120 min
$\quad I>2 \sigma(I)$	intensity decay: $<5 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.122$
$S=1.034$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9.3-14.1^{\circ}$
$\mu=0.097 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism
$0.50 \times 0.13 \times 0.10 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=24.98^{\circ}$
$h=-51 \rightarrow 51$
$k=0 \rightarrow 24$
$l=-2 \rightarrow 5$
3 standard reflections frequency: 120 min
intensity decay: <5\%
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Extinction correction: none

1060 reflections
154 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0532 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Compound (2)

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=243.26$
Orthorhombic
Pbca
$a=7.1468$ (6) \AA
$b=11.994$ (7) \AA
$c=29.493$ (5) \AA
$V=2528.1(16) \AA^{3}$
$Z=8$
$D_{x}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
2250 measured reflections
2220 independent reflections
1548 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.127$
$S=1.059$
2220 reflections
158 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0743 P)^{2}\right.$ $+0.2126 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Scattering factors from
International Tables for
Crystallography (Vol. C)

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=11.3-13.4^{\circ}$
$\mu=0.089 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism
$0.60 \times 0.60 \times 0.50 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.008$
$\theta_{\text {max }}=24.97^{\circ}$
$h=-4 \rightarrow 8$
$k=-4 \rightarrow 14$
$l=-14 \rightarrow 35$
3 standard reflections frequency: 120 min intensity decay: < 5%
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.13 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0039 (9)

Scattering factors from International Tables for Crystallography (Vol. C)

Compound (3)

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=215.21$
Monoclinic
$P 2_{1} / c$
$a=14.188$ (3) \AA
$b=5.2850$ (3) \AA
$c=26.954$ (6) \AA
$\beta=93.550(10)^{\circ}$
$V=2017.2(6) \AA^{3}$
$Z=8$
$D_{x}=1.417 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=11.6-16.0^{\circ}$
$\mu=0.101 \mathrm{~mm}^{-1}$
$T=296$ (2) K

Plate

$0.30 \times 0.20 \times 0.07 \mathrm{~mm}$
Colourless

$$
R_{\mathrm{int}}=0.032
$$

$\theta_{\text {max }}=24.96^{\circ}$
$\omega-2 \theta$ scans
Absorption correction: none
3731 measured reflections
3533 independent reflections
1403 reflections with
$I>2 \sigma(I)$
$h=-1 \rightarrow 16$
$k=-4 \rightarrow 6$
$l=-32 \rightarrow 31$
3 standard reflections frequency: 120 min intensity decay: $<5 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.143$
$S=0.971$
3533 reflections
289 parameters
H atoms constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0553 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{gathered}
$$

For (1), the direction of the polar axis could not be determined reliably as the heaviest atom in the structure was oxygen. For structure (3), the presence of a pseudo-b-glide plane (perpendicular to a) was noted, but no alternative cell could be identified.

For all compounds, data collection: CAD-4 Software (EnrafNonius, 1989); cell refinement: SET4 in CAD-4 Software; data reduction: Xtal3.2 (Hall et al., 1992); program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

DRR thanks the National Health and Medical Research Council (NH\&MRC) of Australia for a project grant (No. 970360) and the Department of Medicine, University of Queensland, for a Research Fellowship and Senior Research Fellowship. The Friedreich's Ataxia Support Group of Queensland is thanked for research funds and a PhD Scholarship for EB. PVB acknowledges financial support from the University of Queensland.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1264). Services for accessing these data are described at the back of the journal.

References

Baker, E., Richardson, D. R., Gross, S. \& Ponka, P. (1992). Hepatology. 15, 492-501.
Becker, E. \& Richardson, D. R. (1999). J. Lab. Clin. Med. 134. In the press.
Beyerman, H. C., Bontekoe, J. S., Vander Burg, W. J. \& Veer, W. L. C. (1954). Rev. Trav. Chim. Pays-Bas Belg. 73, 109-117.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fox, H. H. \& Gibas, J. T. (1953). J. Org. Chem. 18, 983-989.
Grammaticakis, P. (1956). Bull. Soc. Chim. Fr. 109, 109-119.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3. 2 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Johnson, D. K., Murphy, T. B., Rose, N. J., Goodwin, W. H. \& Pickart, L. (1982). Inorg. Chim. Acta, 67, 159-165.

Richardson, D. R. \& Milnes, K. (1997). Blood, 89, 3025-3038.

Richardson, D. R., Tran, E. \& Ponka, P. (1995). Blood, 86, 42954306.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of
Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

Acta Cryst. (1999). C55, 2105-2107

4,4'-Bipyridinium diperchlorate

Seik Weng Ng

Institute of Postgraduate Studies and Research, University

 of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail:hlnswen@umcsd.um.edu.my
(Received 6 July 1999; accepted 23 September 1999)

Abstract

In 4,4'-bipyridinium diperchlorate, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}^{2+} \cdot 2 \mathrm{ClO}_{4}^{-}$, the centrosymmetric dications and the anions are linked by three $\mathrm{N} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{N} \cdots \mathrm{O}=2.893$ (3), 2.915 (3) and 2.972 (3) \AA] into a two-dimensional network.

Comment

The two pyridyl moieties of the $4,4^{\prime}$-bipyridinium dication are coplanar in the diiodide (Iyere et al., 1998) and in the monoclinic modification of the dinitrate (Weakley, 1987), but are twisted by 39° in the orthorhombic modification of the dinitrate (Barker et al., 1990). For the dinitrate, the cation lies on a centre-of-inversion in the orthorhombic modification and on a twofold axis in the monoclinic modifications; both modifications display only one $\mathrm{N} \cdots \mathrm{O}$ hydrogen bond [2.77 (1) \AA (Weakley, 1987); $2.674 \AA$ (Barker et al., 1990)]. However, C-H $\cdots X$ interactions [3.163 (6)3.239 (4) \AA] are present in the two modifications as well as in the centrosymmetric diiodide $[\mathrm{C}-\mathrm{H} \cdots \mathrm{I}=$ 3.740 (5)-3.818 (5) Å] (Iyere et al., 1998).

The two rings in the diperchlorate, (I) (Fig. 1), are also exactly coplanar, a feature that is predicted

(I)

